

Design & Installation of Novel Sensors into the Continuous Casting Mold

Michael K. Okelman (Combined BS/MS Student) & Brian G. Thomas

Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign

- Problem Statement
- Sensor Strip Fabrication & Design
- Sensor Installation Procedure
- Plating over the Sensor
 - review current plating trials
- Dip test sensor testing
 - computational assistance

The Continuous Casting Mold

Schematic of Initial Solidification

University of Illinois at Urbana-Champaign

.

Analyzing the Commercially Plated Copper Coupon

- Did nickel deposit, and at what combination of width & gap?
- Did nickel adhere to the copper, sensor, or both?
- Metallography to be performed at UIUC this summer

There is a good possibility that the sensor strip must be attached to the copper before plating. Fortunately, there are alternatives...

- no melting and fusion take place
- can join dissimilar metals
- Diffusion bonding/welding
 - joint results from atoms moving across the interface & some plastic deformation
 - requires temperatures of about 0.5T_m
 - parts heated & pressure is applied
 - suitable for dissimilar metals
- Silver paste
 - bakes in 2 hours
 - electrically & thermally conductive (k=109 W/m-K)
 - inorganic
 - adhesive & coating applications to 1200°F
 - easy to perform a trial

Attaching the Sensor with Silver Paste

UIUC Tasks

- Coordinate design, manufacturing, testing, & implementation of sensor strip into CC mold between UIUC, UW-Madison, Sumitec, & Nucor
- Use computational results to assist in design of dip test
 experiments & to evaluate sensor signals
- Test installed sensor strip via dip test into molten steel
- Evaluate results of plating tests by performing metallographic analysis of samples
 - after plating procedure
 - after dip test into molten steel

What is a Dip Test?

- Copper block is partially submerged in molten steel for a determined amount of time
- The most available source of molten steel for a dip test would be a tundish
- Alternative to testing plated sensor in a copper mold during casting
- Do not interrupt the casting process or affect the mold

University of Illinois at Urbana-Champaign

 Attempt to match the temperatures & stresses encountered in the copper mold of a continuous caster

Using Simulations to Help Design Dip Tests

- What are the temperatures & stresses associated with continuous casting?
 - perform heat transfer & thermal stress analysis
 - literature review
- How can the duration of the dip test be determined?
 - analytical solution regarding steel solidifying in a thick copper mold
 - simulate solidification to determine temperature distribution in copper block

Material Properties

Contro	nuous asting Consortium	Materia	
		Cu	
	ρ (kg/m3)	896	
	k (W/m-K)	35	

	Cu	Ni	air
ρ (kg/m3)	8960	8890	1.1614
k (W/m-K)	350	70	0.0263
Cp (J/kg-K)	380	456	1007
E (GPa)	110	207	will be used
V	0.343	0.31	for modeling air gap
α (/K)	1.77E-05	1.31E-05	under sensor

(values from Kabelmetal "Copper and Copper Alloy Mold Liners for Continuous Casting of Steel" and MatWeb.com)

Temperature Distribution in Bimetallic Strip

1D temperature distribution

 temperatures higher at Ni coating due to lower thermal conductivity of Ni compared to Cu

comparison b/w analytical & experimental:

→%difference 6.82E-05

University of Illinois at Urbana-Champaign

Embedded Sensor Air Gap Model 4 mm = 100 mm = 100 mm

Metals Processing Simulation Lab

- Assuming everything is working smoothly, the complexity of the model can be increased
 - add air gap at interface \rightarrow incorrect plating procedure
- How does the behavior change?

17

MK Okelman

Air Gap Geometry

1 ARBAS ARBA NUM	APR 25 2006 10:53:28				
		28004 - 2804 1001 2 mm			
		NO ELEMENTS!	0.1 mm		
Air Gap		Air Gap			
uiversity of Illinois at Urbana-Champaign	Metals Process	ing Simulation Lab •	MK Okelman	19	

Temperature Distribution

Embedded Sensor Summary

- Conventional thermocouples cannot accurately quantify temperature at meniscus
- New sensor designed for installation in copper narrow face
- Metallography for plated copper coupons currently underway at UIUC
- Computational results being used to aid in design of experimental dip tests

University of Illinois at Urbana-Champaign

Acknowledgements

- Continuous Casting Consortium at University of Illinois at Urbana-Champaign
- National Science Foundation
 DMI 05-28668 (Sensor)
- X. Li, X. Cheng, U Wisconsin Madison

Metals Processing Simulation Lab

25

MK Okelman

• Mike Powers, Sumitec for sample preparation